Pho(SC)-CTC—a hybrid approach towards zero-shot word image recognition

نویسندگان

چکیده

Annotating words in a historical document image archive for word recognition purpose demands time and skilled human resource (like historians, paleographers). In real-life scenario, obtaining sample images all possible is also not feasible. However, zero-shot learning methods could aptly be used to recognize unseen/out-of-lexicon such images. Based on previous state-of-the-art method “Pho(SC)Net”, we propose hybrid model based the CTC framework (Pho(SC)-CTC) that takes advantage of rich features learned by Pho(SC)Net followed “connectionist temporal classification” (CTC) perform final classification. Encouraging results were obtained two publicly available datasets one synthetic handwritten dataset, which justifies efficacy Pho(SC)-CTC Pho(SC)Net.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-Shot Sketch-Image Hashing

Recent studies show that large-scale sketch-based image retrieval (SBIR) can be efficiently tackled by cross-modal binary representation learning methods, where Hamming distance matching significantly speeds up the process of similarity search. Providing training and test data subjected to a fixed set of pre-defined categories, the cutting-edge SBIR and cross-modal hashing works obtain acceptab...

متن کامل

A Generative Approach to Zero-Shot and Few-Shot Action Recognition

We present a generative framework for zero-shot action recognition where some of the possible action classes do not occur in the training data. Our approach is based on modeling each action class using a probability distribution whose parameters are functions of the attribute vector representing that action class. In particular, we assume that the distribution parameters for any action class in...

متن کامل

A Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning

Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...

متن کامل

Recent Advances in Zero-shot Recognition

With the recent renaissance of deep convolution neural networks, encouraging breakthroughs have been achieved on the supervised recognition tasks, where each class has sufficient training data and fully annotated training data. However, to scale the recognition to a large number of classes with few or now training samples for each class remains an unsolved problem. One approach to scaling up th...

متن کامل

Zero-Shot Recognition via Structured Prediction

We develop a novel method for zero shot learning (ZSL) based on test-time adaptation of similarity functions learned using training data. Existing methods exclusively employ source-domain side information for recognizing unseen classes during test time. We show that for batch-mode applications, accuracy can be significantly improved by adapting these predictors to the observed test-time target-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal on Document Analysis and Recognition

سال: 2022

ISSN: ['1433-2833', '1433-2825']

DOI: https://doi.org/10.1007/s10032-022-00407-6